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We have studied the translational and rotational motion of a sphere in a viscous Lennard-Jones liquid using
molecular dynamics simulations. The drag and torque on a sphere in an effectively unbounded fluid are found
to agree with continuum hydrodynamics results even when the size of the sphere is comparable to that of the
fluid molecules. The diffusivity of a spherical tracer particle is in accord with the Stokes-Einstein relation, and
the corresponding Brownian motion is determined by its interaction with the layers formed by fluid molecules
around it. When a sphere moves near a solid wall, we find that the drag and torque agree with lubrication
theory down to molecular scales, but the predicted divergence is regularized at very short distances due to
depletion of fluid molecules near the wall and the appearance of slip at high shear stress.@S1063-
651X~96!06005-9#

PACS number~s!: 47.15.Gf

I. INTRODUCTION

The problem of a sphere slowly moving with a constant
velocity in a viscous fluid~so that the Reynolds number is
small, Re!1! is one of the most basic problems in hydrody-
namics. For a sphere in an unbounded fluid it was solved by
Stokes@1# in 1851, who obtained Stokes’ law giving the
force F acting on a sphere of a radiusb moving with a
velocity U in a fluid with viscositym:

F56pmbU. ~1!

The exact solution of this problem using continuum hydro-
dynamics for a sphere in a semi-infinite fluid, bounded on
one side by a solid surface was derived more than a century
later by Brenner@2#. He obtained the following result for the
case of a sphere moving perpendicular to the solid surface:

F56pmbUl, ~2!

with

l5 4
3 sinha (

n51

`
n~n11!

~2n21!~2n13!
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21G ,
a5cosh21~e!5 ln~e1@e221#1/2!,
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whereh is the minimal distance between the ball and the
solid surface@Fig. 1~a!#. In the limit h/b→0 this expression
reduces to

F56pmUb2/h; ~3!

i.e., the force diverges when the sphere gets close to the solid
surface.

This result, which is obviously inconsistent with our ev-
eryday experience, arises from several assumptions made in
the analysis:~1! no-slip boundary conditions are valid,~2!
the fluid density remains constant, even as the ball ap-
proaches the solid surface, and~3! both solid surfaces~of the
ball and the wall! are assumed to be perfectly smooth.

No-slip boundary conditions have been employed in hy-
drodynamics for over a century now@3#, and only recently
has it been recognized that although there are many cases
when they are sufficient, sometimes they lead to unphysical
results. A classic example is the infinite energy dissipation
predicted by hydrodynamics for the motion of a contact line
separating two immiscible fluids along a solid surface@4#. In
our falling ball problem, as the ball comes closer to the wall,
the separation between its surface and the wall becomes
smaller. The no-slip boundary condition requires a pressure
gradient to displace the fluid from the gap between ball and
wall, which diverges as the gap size vanishes. There are two
possible factors that can prevent this divergence: first, a
breakdown of the no-slip boundary conditions and, second, a
depletion of the fluid in the gap between the wall and the
ball.

Similar issues arise when one considers a sphere rotating
in the vicinity of a wall. Calculations of Dean and O’Neill
@5# and Goldman, Cox, and Brenner@6# give the following
formula for the torqueT acting from the fluid on a sphere
rotating with an angular velocityV about an axis parallel to
a solid surface at a distanceh from it @Fig. 1~b!#:

T58pmVb3f ~h/b!,

x→0, f ~x!; ln~x!, ~4!

x→`, f ~x!→1.

The functionf (x) cannot be obtained in closed form but can
be evaluated to any desired accuracy by truncating a series
expansion at the corresponding level.
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When the ball is far from the wall,h@b, one recovers the
well known result for the sphere rotating in the unbounded
fluid:

T58pmVb3. ~5!

In this paper we report the results of a study of these
problems with the use of molecular dynamics~MD! simula-
tions. The basic idea of MD simulations is the integration of
Newton’s equations of motion for the constituent molecules
that interact with each other. Previous work has shown that
even for small sizes and short times, the results of continuum
theory are reproduced@7,8#. Nevertheless, since a continuum
approximation is not made and the molecules are treated
individually and in anab initio manner, one may hope to
effectively bridge the gap between microscopic and macro-
scopic phenomena. Alder, Alley, and Pollock@7# carried out
MD simulations for hard spheres and showed that on intro-
ducing a nonlocal viscosity, Stokes’ law~1! holds even for
spheres whose radii are comparable with a molecular radius.

Our results, obtained in a different context, are in accord
with those of the earlier studies.

II. MOLECULAR DYNAMICS

We have used a standard MD algorithm in which mol-
ecules interact via a pairwise Lennard-Jones potential:

V~r !54eF S rs D 212

2S rs D 26G . ~6!

This potential withs53.4 Å ande/kB5120 K, along with
molecular massm540 a.u., is known to successfully repro-
duce the properties of liquid argon@9#. The natural time unit
is then given byt5sAm/e52.16310212 sec. In the re-
mainder of this paper all dimensional quantities given as
pure numbers will be understood as multiplied by an appro-
priate combination ofs, e, andm.

In our simulations Newton’s equations of motion were
numerically integrated using a fifth order predictor-corrector
algorithm with a time step of 0.0025t. The layered-linked
cell algorithm@10# was implemented to speed up the code. In
the majority of our runs we used a system of a size 12312
324, which contained 3136 fluid molecules. The tempera-
tureT was chosen to be 1.2 and the density of the fluid 0.8 to
correspond to the liquid phase. Periodic boundary conditions
were imposed on the system in two directions. In the third
direction, the fluid was bounded by periodically connected
molecular walls with an fcc structure, consisting of 648 mol-
ecules, interacting with each other, the fluid molecules, and
the ball through a Lennard-Jones potential. The mass of the
wall molecules was chosen to be very large, so that they did
not change their positions during the whole simulation. The
lattice parameter of the walls was chosen to be 1.256s @the
nearest neighbor distance between wall molecules is
~1.256/&!s# and was incommensurate with the intermolecu-
lar interaction length of the fluid. The parameters of the
Lennard-Jones potential for the fluid-solid interaction were
chosen to be the same as that for the fluid-fluid interaction.

We have considered several models of the ball.
~1! Ball A: a spherical ball without inner structure, inter-

acting with other particles through a modified Lennard-Jones
potential:

V~r !5H 4eF S r2r 0
s D 212

2S r2r 0
s D 26G if r.r 0

` if r,r 0 , ~7!

with r 052.0 in most of our runs.
~2! Ball B: a spherical ball with molecular structure. It

was obtained by constructing a fcc lattice and taking the
molecules that were inside a sphere of radiusr 0 . Each of the
ball molecules interacted with other particles through a
Lennard-Jones potential, with the same parameters as the
fluid-fluid potential. Most of our simulations were carried out
with a ball B1 consisting ofn556 molecules, with the outer
molecules being at a distance ofr 052 from the center. We
also considered two other balls, B2 withr 053 andn556
and B3 withr 053 andn5189. The density of the ball B3
was the same as that of the ball B1.

FIG. 1. ~a! A sketch of a ball moving towards a solid surface.
~b! A sketch of a ball rotating near a solid surface.
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Initially, the fluid molecules were placed at the vertices of
a fcc lattice. For the temperature and density of the mol-
ecules, this configuration melted into a fluid phase. The
whole system was equilibrated for 25t. During this equili-
bration, the ball was maintained at a fixed position. After the
system was equilibrated, the ball was set into motion at a
constant speedU. Most of our data were obtained atU52.
We carried out some runs atU50.8 to confirm that the
qualitative results did not depend on the precise value ofU.
Typical values of the Reynolds number wereO(1). The
mass of the ball A was chosen to be very large~;108! in
order to maintain the motion at constant speed. For ball B,
the individual molecules were likewise chosen to be very
heavy, thus maintaining the rigidity of the ball.

In order to study rotational motion we prepared the sys-
tem as described above. After the initial equilibration the ball
was rotated by assigning velocitiesvi5V3~r i2r c! to the
individual molecules of the ball~we used only ball B to
study rotational motion, since ball A does not have any struc-
ture and thus exerts no rotational drag on the surrounding
fluid! at every time step, wherer c is the position of the
center of mass of the ball andr i is the coordinate of the ball
molecule. We usedV51.2 in our simulations.

III. STOKES LAW IN AN UNBOUNDED FLUID

We begin by addressing how well Stokes’ law is repro-
duced at the microscopic scale of our MD simulations. To
our knowledge, the only previous study of this problem was
done by Alley and Alder@7#. They showed that generalized
hydrodynamics quantitatively applies on the molecular scale
by computing the dependence of the Stokes friction coeffi-
cient on the size of a massive Brownian particle.

We measured the force acting on a ball moving with con-
stant velocityU in the central region of a large container of
a viscous Lennard-Jones fluid with walls at the top and bot-
tom and periodic boundary conditions in the transverse di-
rections.@The net force was determined by a vector sum of
the individual forces on the ball~or the molecules compris-
ing the ball!.# The container was chosen large enough that
boundary effects did not play a role. Our attempts at using
fully periodic boundary conditions without any walls led to a
force that was somewhat smaller due to the effects of the
replicas of the ball in the direction of motion~the effects of
the replicas, perpendicular to the direction of motion, are not
as large!. Also the solid walls prevent the fluid from acquir-
ing a nonzero mean velocity due to the momentum transfer
from the ball. We extracted the effective ball radius~denoted
by b0! using~1!. The force was averaged over 50 data points,
each consisting of a time average over 0.25t. The viscosity
of the Lennard-Jones fluid under the conditions of our runs
~T51.2, r50.8! has been measured previously in@8# and is
equal tom51.9460.16. The results are given in Table I.
They agree well with the definition ofb asr 011. This defi-
nition comes from the observation that the effective radius of
a particle in a solvent is the radius of the sphere inaccessible
to the solvent particles@7#. Since the effective radius of the
Lennard-Jones interaction is approximately 1, this radius
should ber 011 in our case. To check this argument we
performed simulations with a nonwetting ball A1, which in-
teracted with fluid molecules only through the repulsive part

of the modified Lennard-Jones potential~7!. This ball had a
larger effective radius than a regular ball A with the samer 0
~Table I!, consistent with the definition of the effective ra-
dius as the radius of a sphere inaccessible to the solvent
particles.

Likewise, to determine the effective radius of a rotating
ball we measured the torque acting on a ball rotating in an
unbounded Lennard-Jones fluid, and extracted the ball radius
~denoted byb1! using~5!. ~The net torque is the vector sum
of the torques acting on the molecules comprising the ball,
measured with respect to the center of mass.! The torque was
averaged over 30 data points, each consisting of a time av-
erage over 2.5t. The results are also shown in Table I. The
effective radius is the same for B2 and B3 and thus indepen-
dent of the ball density. The values of the effective radii are,
however, quite different from our previous definition ofb as
r 011. To understand this difference one may consider the
boundary conditions at the surface of rotating and translating
balls. Both formulas~1! and ~5! were obtained using an as-
sumption that the fluid velocity near the ball surface equals
the ball velocity. The translating ball pushes the fluid mol-
ecules below it, causing them to move with a velocity close
to its own. Indeed, a significant fraction of the fluid sur-
rounding the ball has to merely match the normal~to the
ball! component of its velocity with that of the ball. As stated
earlier the matching of the normal component of the fluid
velocity with that of a solid is quite natural and should be
expected.

On the other hand, in order to satisfy no-slip in the rota-
tional case, the fluid surrounding a rotating ball needs to
match the tangential component of its velocity with that of
the ball. This requirement is more nontrivial and, indeed, one
may not expect it to be valid on a microscopic scale. In order
to study the boundary conditions on the surface of the rotat-
ing ball we measured the angular velocity of the fluidv(r )
as a function of a distance from the ball centerr . According
to hydrodynamicsv(r ) obeys the equation

v~r !5Vb3/r 3, ~8!

so that, on the ball surface (r5b), the angular velocity of the
fluid equals the angular velocity of the ballV.

Figure 2~a! shows the angular velocity of the fluid, nor-
malized byV versus (r 0/r )

3. To obtain this picture we di-
vided the space around the ball into concentric spherical
shells and averaged thev in each shell for 100t. It is obvious
that no-slip boundary conditions are not satisfied@11#, since

TABLE I. Effective radiib0 @obtained from~1!#, b1 @from ~5!#,
andb2 @from ~8!# for five different balls described in the text. The
difference betweenb0 andb1 ~or b2! is a measure of the slip length
for the rotational motion of the ball.

Ball r 011

b0 b1 b2

U50.8 U52.0

A 3.0 2.960.3 3.360.3
A1 3.0 3.560.4 3.660.4
B1 3.0 2.760.3 3.160.3 1.460.2 1.760.2
B2 4.0 4.560.5 4.360.4 2.260.2 2.660.3
B3 4.0 4.460.5 4.360.4 2.260.2 2.760.3
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at r5r 0 , v'0.6V. One can obtain another estimate of the
effective ball radius using~8! ~we denote this value asb2 in
Table I!. Estimates based on the slope of the curve@Fig. 2~a!#
or on the value ofb at whichv5V lead to substantially the
same results. The results show good agreement with the val-
ues ofb1 extracted from~5!. Figure 2~b! shows a plot of the
density of the fluidr around the rotating ball normalized by

the mean fluid densityr0 versus (r /r 0). It is interesting to
note that the rotation of the ball does not destroy layering.
Further, the fluid density is indistinguishable from that
around a nonrotating ball.

We also studied the translational motion of a spherical
particle in a polymeric fluid. We used ball A in these studies.
The molecules of the fluid were comprised of linear chains.

FIG. 2. ~a! The angular velocity of the fluid,
surrounding the rotating ball B1~r 052.0,
V51.2! as a function of the inverse cube of the
distance from the center of the ball. The solid line
is a least squares fit. The bars represent the sta-
tistical error estimates.~b! The fluid density near
a rotating ball B1~r 052.0,V51.2! showing the
layering of the fluid around the ball.
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Each chain consists of 10 beads connected by an anharmonic
spring @12#. All the beads interact via a pairwise repulsive
Lennard-Jones potential

V~r !5H 4eF S rs D 212

2S rs D 26

1
1

4G if r<21/6s

0 if r>21/6s. ~9!

For the beads that are nearest neighbors in a chain, an addi-
tional attractive potential was added:

Vatr~r !5H 20.5kR0
2 lnF12S r

R0
D 2G if r,R0

` if r>R0 , ~10!

FIG. 3. The velocity autocorrelation function
for balls ~a! D1, ~b! D2, and ~c! D3. The inset
shows the behavior at long times.
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with R051.5 andk530.
The chosen values of fluid density and temperature

~r50.84,T51! correspond to the liquid phase. The radius of
gyration of a polymeric fluid molecule is 2.860.3. The vis-
cosity of such a fluid was measured previously in@12#:
m57.0960.09. We measured the force acting on a ball mov-
ing with a constant velocity through this fluid and extracted
its effective radiusbp using ~1!. The results are given in
Table II.

The difference betweenb0 andbp can be explained by the
fact that since the molecules of the polymer are much larger
than the ball, there should be a significant slip@it is interest-
ing to note that the force acting on the Lennard-Jones par-
ticle (r 050) is the same, whether it moves through a
Lennard-Jones or a polymeric fluid#.

We conclude this section by noting that the discrepancies
between the various length scales listed in Tables I and II,
while clearly nonzero, are nevertheless of the order of a mo-
lecular diameter, so that in the large length scale limit, they
would all effectively correspond to no-slip boundary condi-
tions @13#.

IV. DIFFUSION

The diffusion of a spherical particle in a viscous liquid is
closely related to the problem of a particle moving with a

constant velocity in the fluid. The simplest model describing
the motion of such a particle is the Stokes-Einstein model,
which gives the following mean square displacement of the
diffusing particle at large time:

^r2~ t !&56Dt, ~11!

where

D5kBT/~6pmb! ~12!

is the diffusion coefficient, which can also be related to the
velocity autocorrelation function Z(t)5^v~0!•v(t)&/
^v~0!•v~0!&.

D5
kBT

m E
0

`

Z~ t !dt. ~13!

The first MD study of self-diffusion in liquid argon@14#
showed that MD simulations can reproduce the properties of
liquid argon quite well. In the present work we report the
results of MD simulations of the diffusion of a tracer particle
in a Lennard-Jones fluid. In these studies we used the ball A.
The fluid molecules were initially placed at the vertices of a
fcc lattice. Periodic boundary conditions were imposed on
the system. After initial equilibration the ball was allowed to
diffuse and its velocity was recorded at every time step
~0.005t!.

Figure 3 shows the velocity autocorrelation function av-
eraged over four runs for three different balls: Fig. 3~a!: ball
D1 with r 053 andm51; Fig. 3~b!: ball D2 with r 053,
m510; Fig. 3~c!: ball D3 with r 050, m51 @r 0 is defined
in ~7!#. Ball D3 was simply a tagged liquid molecule.
Figure 4 shows the power spectrumS( f )
5limt→`u(1/t)* 0

tdt Z(t)exp(2 i f t )u2 of the velocity auto-

TABLE II. Effective radii obtained from~1! for the Lennard-
Jones (b0) and polymer (bp) fluids.

r 011 b0 bp

1 0.5260.05 0.1260.01
4 4.4 60.4 2.5 60.1

FIG. 3. ~Continued!.
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correlation function for the same three balls. Unlike that for
ball D3, the velocity autocorrelation functions for balls D1
and D2 show oscillations that remain undamped even at rela-
tively long times~.40t!. The periodT of these oscillations
does not change with time and is related to the timet1 when
the velocity autocorrelation function becomes zero for the
first time (T54t1). The amplitude modulation of the veloc-
ity autocorrelation function of ball D1 is presumably due to
periodic boundary conditions.

To explain this behavior we focused on the liquid mol-
ecules that are close to the diffusing ball, since the ball mo-
tion is determined by the interaction with these molecules.

The fluid molecules form well pronounced layers around
the ball. The timet1 when the velocity autocorrelation func-
tion goes to zero for the first time can be estimated as a time
ts for the diffusing particle to stop after collision with a
liquid molecule from the first layer, assuming that the liquid
molecule does not move@15#. An explicit calculation gives

FIG. 4. The power spectrum of the velocity
autocorrelation function for balls~a! D1, ~b! D2,
and ~c! D3.
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ts50.025, whilet150.028 for ball D1 andt150.145 for ball
D3. ts estimatest1 for D1 much better than for D3 because
the larger the ball the better the approximation of the mo-
tionless liquid molecules.

Second, to see how stable the first layer is we performed
the following simulation: we recorded the fluid particles that

formed the first layer immediately after equilibration, then
we calculated what fraction of those particles remained in the
first layer at later times. Figure 5 shows that the first layer is
much more stable in the case of ball D1 than in the case of
ball D3, which should be expected since the number of the
liquid molecules in the first layer around the ball D1 is much

FIG. 5. The fractionf (t) of the fluid mol-
ecules, which were in the first layer att50,
which remains in the first layer at timet for the
balls D1 and D3.

FIG. 4. ~Continued!.
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larger than around the ball D3. Figure 5 also shows that a
significant fraction of the liquid particles that were in the first
layer around ball D1 after equilibration remains there even at
very long times~;50t!, which may explain the persistence
of the oscillations.

We also calculated Zbf(t)5^v~0!•vf(t)&/
[ ^v2(0)&^v f

2(0)&] 1/2, the correlation function of the veloci-
ties of the ball and the center of the mass of the first layer
and the velocity autocorrelation functionZf(t) of the center
of the mass of the first layer, enabling us to visualize the ball
motion: it oscillates inside a cage@16# formed by the fluid
molecules of the first layer, at the same time the cage itself
moves more or less in one direction, since the velocity auto-
correlation function of its center is positive.

The diffusion coefficient was calculated using~13!. The
diffusion coefficients obtained for balls D1 and D2 were the
same, in agreement with~12!. We extracted the effective
radius of the ball using~12!.

Table III presents the comparison between effective radii
b0 obtained from~1! andbD from ~12! for balls of different
sizes. It is interesting to note that the effective radii obtained
from ~12! are somewhat smaller than those obtained from
~1!. This is due to the fact that although according to the
Stokes-Einstein model the diffusing particle moves against

the flow, on the average, in reality, it spends an equal amount
of time moving with and against the cage,Zbf(t50)'0,
thus encountering less resistance.

V. STOKES’ LAW IN THE PRESENCE OF A WALL

After studying the motion of the ball in the unbounded
fluid we now turn to the problem of a sphere in the vicinity
of a solid wall.

We first considered a ball translating in a fluid towards a
molecular solid surface. Most of our results were obtained
with ball A in these studies. A few runs with ball B1 yielded
essentially the same behavior.

We defineh, the distance from the ball to the wall, so that
ath50 the force of the wall on the ball vanishes. Our results
are obtained from 10 runs, during each of which we averaged
the force over 0.25t, when the ball was far from the wall
(h.2.2) and over 0.025t, when the ball was close to the
wall (h,2.2). Figure 6 shows the comparison between our
MD simulations and the Brenner result~2!. We find that the
continuum results are reproduced until the separation be-
tween the ball and the wall becomes of the order of a few
molecular radii.

In order to understand the origin of the discrepancy we
focus on the behavior of the layer of fluid closest to the wall,
as the ball comes very close to the wall (h'0). Figure 7~a!
shows the distribution of fluid molecules in the first layer,
normalized by the mean fluid density, as a function of the
horizontal distance from the center of the ball. In order to
obtain this picture we divided the first layer into rings cen-
tered around the axis going through the ball center and per-
pendicular to the wall and averaged the number of fluid par-
ticles in each ring over 0.025t in 34 independent runs. The

FIG. 6. The force of fluid resistance acting on
ball A approaching a solid molecular or 3-9 po-
tential wall,U52.0, b53.0. The solid line rep-
resents the Brenner result~2!.

TABLE III. Effective radii obtained from~1! (b0) and ~12!
(bD).

r 011 b0 bD

1 0.5260.05 0.4160.04
3 2.9 60.3 1.9 60.2
4 4.4 60.4 2.7 60.3
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figure indicates that, although the region under the ball is
substantially depleted of fluid molecules, a few molecules
remain trapped under the ball, whereas in equilibrium, this
region is empty of all fluid molecules.

Figure 7~b! shows the breakdown of another assumption
made in obtaining~2!—the validity of no-slip boundary con-
ditions @17#. The figure is the plot of the radial velocityVr
normalized by the ball velocityU as a function of the radial

distance from the ball center. It shows that fluid molecules
have a nonzero radial velocity profile—they are being
squeezed out from under the ball along the wall. At the same
time, the normal component of the fluid molecules velocity
Vz is essentially zero@Fig. 7~c!#.

In order to assess how these results depend on the type of
wall we are using, we also performed simulations with a
continuum wall, obtained by replacing individual wall mol-

FIG. 7. ~a! Density of the fluid in the first
layer near the molecular and 3-9 potential wall,
when the ball A~b53, U52! has just touched
the wall. This picture was obtained by averaging
over 34 runs; the point indicated byP corre-
sponds to a total of 6 fluid molecules during all
these runs, whereas the point indicated byQ cor-
responds to a total of 290 molecules. Note that
the ring size corresponding toQ is larger than
that for P. ~b! Radial velocity distribution in the
first layer of the fluid near the molecular and 3-9
potential wall, when ball A has just touched the
wall. ~c! Normal velocity distribution in the first
layer of the fluid near the molecular and 3-9 po-
tential wall, when ball A has just touched the
wall.
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ecules by a uniform density distribution, thus leading to a 3-9
potential in the direction perpendicular to the wall. Our re-
sults were obtained from 15 runs, during each of which we
averaged the force over 0.25t, when the ball was far from the
wall (h.2.2) and over 0.025t, when the ball was at a dis-

tanceh,2.2 from the wall. Again, the force follows the
continuum curve~2! until the ball-wall separation becomes
of the order of a molecular radius~Fig. 6!. In this case the
force drops down earlier than in the case of the molecular
wall. Since now the wall surface is smooth, it is much easier

FIG. 8. The force of fluid resistance acting on
ball A moving through a thin film of fluid for
three different cases.

FIG. 7. ~Continued!.
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to remove the fluid molecules from the gap between the ball
and the wall. This can also be seen in Fig. 7~a!, which shows
the density distribution in the first layer of fluid molecules
near the wall. The depleted region is larger than in the case
of the molecular wall, and indeed, it is larger than the de-
pleted region in an equilibrium situation, confirming the fact
that it is easy to remove fluid molecules from under the ball
in this case. Figure 7~b! shows that, again, no-slip boundary
conditions are violated and there is a flux of fluid molecules
away from the ball. The normal velocity is still close to zero
@Fig. 7~c!#. It is interesting to note that the radial velocity in
this case is of the order of the velocity of the ball, which is
an order of magnitude smaller than for the molecular wall.

A simple explanation of this phenomenon is provided by
the following analogy: one may consider a ball lying on a
surface, which is pushed by some other object moving with
constant velocity. If the surface is smooth and the ball does
not get stuck it will move with the velocity of the pushing
object; however, if the ball gets stuck~which is the case if
the wall potential is corrugated because of the molecular
structure! it will start to move later~the depletion region is
smaller! and with much larger velocity when it is able to get
depinned. Thus, we see that the breakdown of no-slip bound-
ary conditions and the existence of a region depleted of fluid
~leading to the removal of the divergence! do not qualita-
tively depend on the model of the wall being used.

We also performed MD simulations for the case when
there is only a thin film~one molecular layer! of fluid ad-
sorbed on a solid molecular wall. The results for ball A with
r 052.0,U52.0, r 052.0,U54.0, andr 054.0,U52.0 are
shown in Fig. 8. We performed 15 runs for each ball, aver-
aging the force over 0.025t. This figure has two interesting
features—first, the force takes on values that are much higher

than in the semi-infinite fluid case and, second, the force
does not depend on the ball velocity. Both these features can
be explained by the fact that since the film is very thin, fluid
molecules do not have enough time to get out of the way of
the ball, and because of that the film acts almost like a rigid
medium, which exerts a force, primarily depending on the
displacement of its molecules and not on the velocity of the
ball.

We now turn to a ball rotating in the vicinity of a wall. In
these simulations a molecular wall was used. We used ball
B1 in these studies, and we employedb1 as an effective ball
radiusb. We placed our ball at a specified distance from the
wall and rotated it at a constant angular velocityV51.2 and
equilibrated the whole system for a period of 25t. After this
equilibration, we monitored the torque acting on the ball
from the fluid. Figure 9 shows the torqueT versus distance
from the wallh. The values of the torque were averaged over
8 data points, each point representing an average over 12.5t.
The absence of a significant increase of the torque, let alone
a logarithmic divergence as the ball approaches the wall, can
be explained by a depletion of the fluid in the ball-wall gap.
In our case the torque goes down rather than up because the
ball has a smaller number of fluid molecules surrounding it.

VI. CONCLUSION

We have shown that MD simulations with a Lennard-
Jones fluid can successfully reproduce the results of hydro-
dynamics such as~1! or ~5! even for particles that are com-
parable in size to the fluid molecules. The only previous
studies of this problem were performed by Alder, Alley, and
Pollock @7#, who used a fluid composed of hard spheres. Our
results show that the effective radii of the moving balls, de-
fined by formulas~1! and ~5! are quite close to their geo-

FIG. 9. The torque acting from the fluid on a
rotating ball B1,V51.2, r 052.0. The solid line
shows the predictions of Eq.~4!.
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metrical values. The effective radius of the translating ball
can be defined as the radius of a sphere inaccessible to the
solvent molecules. For the rotating ball the effective radius,
entering ~5!, is smaller than the corresponding radius for
translational motion. This discrepancy is due to the break-
down of no-slip boundary conditions on the surface of the
rotating ball.

We have also studied the diffusion of a spherical particle
in a Lennard-Jones fluid. We have shown that fluid mol-
ecules form well pronounced layers around the diffusing par-
ticle that are quite stable, and that determine the motion of
the particle. The effective radii, entering~12!, are somewhat
smaller than those for translational motion due to the collec-
tive motion of the fluid molecules.

We have also addressed the issue of the unphysical diver-
gences arising when two solid surfaces come close to each

other. Our MD simulations show that if one takes into ac-
count the molecular aspects of the problem, the divergences
are removed. We have also focused on the behavior of the
fluid layer near the wall as the ball approaches the vicinity of
the wall and monitored its density and velocity profile. The
fluid between the ball and the wall is found to be depleted
and no-slip boundary conditions are found to break down
when the ball is close to the solid surface.
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